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Synthesis and Crystal Structure of NaNb,AsOq
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The high-temperature/high-pressure hydrothermal synthesis
and X-ray single crystal structure of NaNb,AsQq are reported.
The title compound contains a three-dimensional network of
NbOg, NbO;, and AsO, groups, enclesing one-dimensional chan-
nels containing seven-coordinate guest sodium cations. UV/visible
measurements on NaNb,AsQOg indicate two distinct absorption
features at ~285 and ~360 nm, Crystal data for NaNb,AsOjg:
M, = 410.79, monoclinic, P2,/n (No. 14), a = 4.8970(6) A, b =
8.516(2) A, ¢ = 15.075(3) A, B = 98.971(6)°, V = 620.98 A}, Z =
4, R = 5.31%, R, = 5.15%, 2121 observed reflections (I >
30’([)) © 1994 Academic Press, Inc.

INTRODUCTION

The synthesis and characterization of new materials
with useful nonlinear optical (NLO) properties is an ac-
tive area of research in solid-state chemistry and physics.
One outstanding example of a large family of phases with
technologically useful optical properties is provided by
potassium titanyl phosphate (KTiOPQ,; KTP) and its
many isotypes (1, 2). It has been suggested (3) that mate-
rials containing octahedral TiOg and NbQ, groups are
likely to have favorably large NLO coefficients due to
their propensity to form distorted TiO, and NbOg octa-
hedra containing short (¢ < 1.8 A), polarizable Ti-O and
Nb-~O bonds, respectively. These short bonds are often
referred to as titanyl Ti=0 and niobyl Nb=0 ‘“double”’
bonds (1), although the analogy with organic C=C dou-
ble bonds is not exact, and the hybridization scheme for
Ti or Nb atoms (4) is quite different to those which define
carbon-like o and 7 bonds. However, for any bulk sec-
ond-harmonic-generation (SHG) response to be observ-
able, these distorted TiOg or NbOg moieties must crystal-
lize as parts of noncentrosymmetric crystal structures.
The only method available at the present time for incor-
porating these “‘favored’ TiOg and NbQOg groups into new
types of noncentrosymmetric crystal structures with po-
tentially useful SHG properties is via exploratery synthe-
sis techniques.

! To whom correspondence should be addressed.

For example, we have recently reported the syntheses,
structures, and optical and spectroscopic properties of
several members of a family of phases of general formula
M(Nb/Ta),POs (M = Li, Na, K, Ag, ...) whose struc-
tures (5, 6, 7) are based on a microporous, 3-dimensional,
anionic, octahedral/tetrahedral framework containing the
ion-exchangeable guest cations. These materials have
powder nonlinear optical coefficients (~100 x that of
quartz) comparable to that of the commercially useful 8-
BaB,0, (8).

Because arsenic-containing isotypes of KTiOPQ.,
such as KTiOAsQ, (9}, show great promise as SHG mate-
rials, we have carried out exploratory hydrothermal syn-
theses of sodium/niobium/arsenic-containing materials,
to determine if arsenic-containing congeners of the
M(Nb/Ta),POgs-type phases can be prepared. The new
phase NaNb,;AsO; was successfully synthesized in sin-
gle-crystal form: However, its structure is completely
different to those of the M{Nb/Ta),PO; family of phases
and is described below, We also report X-ray powder
data, ion-exchange reactions, and UV/visible spectro-
scopic results for NaNb;AsO;.

NaNhb,AsQ; complements the large number of alkali-
metal niobium phosphates and arsenates which have
been structurally characterized recently, including the
foilowing phases: CsNbOP,O; (10}, KNbOP,O; (11),
KNDb1P30ys (12), K9Nby 13Ps 4706 (13), K3NDbP4Oy (14),
NB4NbgP6035 (15), K4Nbe5034 (16), CSNb3P3015 (17),
RbNb;Oy(PO,), (18), K:Na, sNbgPsO3 (19), NasNb;g
P20y « P30 (20), Nap sNb2(PO4); (21), K;NbyAs, Oy, (22),
KNbsAsOy; (23), and K;NbAs; Oy (24). Most of these
M/Nb/P/O materials are related to tungsten-bronze-type
structures. The reiationship between the structures of the
three distinct K/Nb/As/O phases and that of NaNb,AsOy
is briefly described below.

SYNTHESIS AND PHYSICAL CHARACTERIZATION

The title compound was prepared by a high-tempera-
ture/high-pressure hydrothermal reaction: 2 mmol of
Na,HAsO, - TH,0 (0.624 g), 0.4 mmol of Nb,Os (0.106 g),
and 2 mmol of 4 M H3AsO, (0.5 ml) were sealed in a goid
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tube, heated to 750°C, and held at that temperature for 60
hrin a Leco TemPres hydrothermal bomb (P, = 32,000
psi). The bomb was cooled to 400°C over a 30-h period
and then turned off to cool to ambient overnight. After
breaking open the gold tube, numerous rod- and needle-
like crystals (yield 0.164 g) were recovered from the pH 4
mother liquor by vacuum filtration and rinsing with
water. As-synthesized crystals of NaNb;AsOg are light
gold in color and have a maximum linear dimension of
~2 mm.

X-ray powder data (Scintag automated PAD-X diffrac-
tometer, #—6 geometry, flat-plate sample, CuKo radia-
tion, A = 1.54178 A, T = 25(2)°C) were collected for a
thoroughly ground sample of NaNb;AsOg. The resulting
diffractogram did not match the powder patterns of any
known Na/Nb/As/O phases nor those of the starting ma-
terials. The instrumental Ka,/Ka, profile was reduced to
a single CuKe; peak (A = 1.540568 A) by a software
“stripping’’ routine, and d-spacings were established, us-
ing silicon powder (a = 5.43035 151) as an internal stan-
dard, relative to this wavelength. Peak assignments were

TABLE 1
X-Ray Powder Data for NaNb,AsO;
h k ! 290!:5 A(za)a dcalc A(d)b Irel
0 1 1 12.049 0.013 7.383 -0.008 73
0 2 0 20.940 0.008 4,252 -0.002 17
0 2 1 21.763 -0.015 4.088 0.003 3
1 0 -3 23.657 —0.004 3.766 0.001 2
1 1 -3 25.906 —(.003 3.444 0.000 25
1 0 3 27.750 0.001 3.219 0.000 3i
1 2 -1 28.009 -0.003 3,189 4.000 35
1 2 -2 29.340 018 3.049 ~0.002 6
1 i —4 29.868 -0.017 2.993 0.002 4
0 2 4 32.000 0.006 2.799 —0.001 100
1 0 -5 32.850 0.018 2.730 —0.001 8
0 3 2 33.870 0.000 2.649 0.000 15
1 2 3 35.010 0.020 2.566 -=0.001 7
0 3 3 36.570 0.031 2.461 —-0.002 3
0 2 5 36.853 —0.048 2.438 0.003 5
0 1 6 37.800 —0.024 2.380 0.001 2
2 i 0 38.760 —-0.011 2.324 0.001 3
] 4 0 42.534 —0.008 2.126 0.000 2
2 1 -4 42.69%0 —0.007 2.119 0.000 3
1 L -7 45,150 0.001 2.009 4.000 4
1 3 -5 46.170 —0.008 1.967 0.000 3
2 2 2 46,500 —0.004 1.953 4.000 8
2 2 -4 46.727 0.016 1.945 —0.601 6
4] 0 8 49.020 0.015 1.859 —0.001 21
0 4 4 49.380 —-0.011 i.846 0.000 2
2 3 -4 52.870 —0.004 1.732 0.000 6
1 2 7 54,283 0.008 1.690 0.000 5
1 3 -7 54,950 0.012 1.670 0.000 5

@ 20505 — 2ecalc-
b dobs - d:alc-
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made on the basis of LAZY-PULVERIX (25} simulations
using the single-crystal lattice parameters described be-
low, Optimized cell parameters (with e.s.d. in parenthe-
ses) of a = 4.892(2) A, b = 8.504(3) A, ¢= 15.059(5) A,
and 8 = 98.96(2)° resulted from the monoclinic lattice-
parameter refinement. No other lines were observable in
the X-ray powder data. X-ray powder data for NaNb,
AsOyg are reported in Table 1.

Ion exchange (molten AgNQ,, 225°C, 1 day) was at-
tempted on the NaNb,AsQq crystals. A powder pattern of
the recovered, post-ion-exchange material indicated that
sharply crystalline lines due to the possible Na,_, Ag,Nb,
AsOy structure were present. However, many other uni-
dentified lines, possibly due to insoluble decomposition
products of AgNO; + NaNb;AsOq, were also visible. It
was not possible to unambiguously assign Milier indices
to enough reflections in the Na;_, Ag,Nb,AsOg pattern
for reliable least-squares refinement and hence systemati-
cally determine if any change in unit-cell dimensions had
occurred dite to the ion-exchange process.

UV/visible data for ground crystals of NaNb,AsOg
were collected on a Cary 14 automated spectrometer.
The resulting spectrum is illustrated in Fig. 1 and shows
two distinct features, centered at ~2835 and ~360 nm.
The first of these we ascribe to a ligand to metal charge-
transfer (LMCT) band centered on the AsQ, group, as
was observed in earlier studies of alkaline-earth arse-
nates (26). The 360-nm band may be attributed to a NbO,-
centered LMCT transition; a very similar feature was
observed in the UV/visible spectrum of KysLi;sNb, POy
5.

Structure Determination

The structure of NaNb,AsQOg was determined by stan-
dard single-crystal X-ray methods. A suitable single crys-
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FIG. 1. UV/visible spectrum of NaNb,AsOyg.
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tal was selected and mounted on a thin glass fiber with
cyanoacrylate adhesive, and room-temperature [25(2)°C)
intensity data were collected on a Huber automated 4-
circle diffractometer (graphite-monochromated MoKo
radiation, A = 0.71073 A) (27). After locating and center-
ing 25 reflections (typical -scan width = 0.17°), the
unit cell constants were optimized by least-squares re-
finement, resulting in the monoclinic lattice parameters
of a = 4.8970(6) A, b = 8.516(2)A, ¢ = 15.075(3)A, and
B = 98.971(6)°, (e.s.d. in parentheses). Intensity data
were collected in the #-28 scanning mode with standard
reflections monitored for intensity variation throughout
the course of the experiment. The scan speed was 6°/min
with a scan range of 1.3° below Ka, to 1.6° above Ka,. No
significant variation in standards was observed. The raw
data were reduced using a Lehmann-Larsen profile-fit-
ting routine (28) and the normal corrections for Lorentz
and polarization effects were made. The systematic ab-
sences in the reduced data (h0I, & + I; 0k0, k) uniquely
indicated space group P2,/n (nonstandard setting of
P2,/¢c, No, 14). After data merging (3146 measured inten-
sities; Ry, = 5.2%), 2121 reflections were considered ob-
servable according to the criterion { > 3a (7).

The crystal structure of NaNb;AsOg was partially
solved (Nb, As, some O-atom positions) using the direct-

TABLE 2

Crystallographic Parameters for NaNb;AsO,
Empirical formula Nb,As;Na, Oy
Formula weight 410.79
Habit Gold needle
Crystal size (mm) 0.1 x 0.1 x 0.5
Crystal system Monaclinic
a(A) 4.8970(6)
B (A) 8.516(2)
c(A) 15.075(3)
B (%) 98.971(6}
V&) 620.98
Z 4
Space group P2/n (No. 14)
T(°0) 25(2)
AMoKa) (A) 0.71073
foae (B/em?) 4.39
pwMoKe) (cm™h) 88.8
Absorption correction d-scan
Akt data range -7—= 7,012,022
min, max Ap (¢/AY) —~1.28, 1.69
Total data 3146 (29 < 65°)
Observed data® 2121
Parameters 110
R(F) (9%) 531
R (F) (%) 5.15

S (goodness of fit) 1.12

a I > 3a(I) after merging.
R = 2' |Fo[ - |Fc| |’,E|Fo|‘
‘Rw = IEW(JFOI - 'FCDZIEWJFHP]M'
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TABLE 3
Atomic Positional Parameters for NaNb;AsQy

Alom x ¥ z U

Na(l) 0.0872(6) —0.0198(3) 0.6202(2) 0.0337
Nb(1} 0.09300(7) 0.56984(4) 0.63908(2) 0.0177
Nb(2) —0.47542(7) 0.70444(4} 0.48120(2) 0.0184
As(l) —0.34186(9) (.75995(5) 0.76487(3) 0.0180
o) —0.0952(7) 0.7564(4) 0.7004(2} 0.0222
o) 0.4181(6) 0.6206(4) 0.7406(2) 0.0232
[0]Kk))] —0.2607(6) 0.5418(4) (.5624(2) 0.0203
O 0.2539%(7) 0.7151{4) 0.5660(2) 0.0213
0(5) —0.0275(7) 0.4426(4) 0.7461(2} 0.0218
Q(6) 0.2571(7) 0.3895(4) 0.6083(2) 0.0235
o —0.2800(7) 0.8737(4) 0.5056{2) 0.0247
0O(8) —0.7261(7) 0.7859(4) 0.3738(2) 0.0225

@ U AY) = 113[Usy + Usin?(Uyy + Usy + 2015 cos B)].

methods program SHELXS-86 (29) and the other atom
positions were located from Fourier difference maps dut-
ing the refinement procedure. The final cycles of full-
matrix least-squares refinement were against F and in-
cluded anisotropic temperature factors and a secondary
extinction correction, (30). Neutral-atom scattering fac-
tors, taking account of anomalous dispersion terms, were
obtained from the **International Tables™ (31). At the end
of the refinement (R = 5.31%, R, = 5.15%, Tukey-
Prince weighting scheme (32)), analysis of the various
trends in ¥, versus £, revealed no unusual effects. The
least-squares, Fourier, and subsidiary calculations were
performed using the Oxford CRYSTALS system (33),
running on a DEC MicroVAX 3100 computer. Tables of
anisotropic thermal factors and observed and calculated
structure factors are available as supplementary material.
Crystallographic and data-collection parameters for
NaNb,AsO; are summarized in Table 2.

CRYSTAL STRUCTURE

Final atomic positional and equivalent isotropic ther-
mal parameters (34} for NaNb,AsQ; are listed in Tabie 3,
with selected bond distance/angle data in Tables 4 and 5.
The asymmetric unit, which consists of 1 Na, 2 Nb, | As,
and 8 O atoms, and atom-labeling scheme for NaNb;As
Qg is illustrated in Fig. 2.

The new crystal structure of NalNb,AsQOg consists of an
edge- and vertex-linked three-dimensional network of
Nb{1)O4, Nb(2)05, and AsO, polyhedra, linked via Nb-
(-Nb and Nb—-0O-As bonds. The Nb{l) polyhedron is a
fairly distorted octahedron (4., (Nb-0O) = 1.995(2) A, var-
iation of cis O-Nb-0O angles: 79.4(1)}-99.3(1)°). The
Nb(2) moiety (d,, = 1.952(2) A) may be described as
square-pyramidal (Fig. 2), although a very long contact to
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TABLE 4
Bond Distances (A) for NaNb,AsO;
Na(1)—0O(1) 2.495(4) Na(hH-O(2) 2.415(4)
Na(1)-0(4) 2.577(4) Na(1)-0(5) 2.731(4)
Na(1)-0(h 2.465(4) Nai{ -0y 2.568(4)

Na(1)-0(8) 2.675(4)

Nb(1)-0(}) 2.120(3) Nb(i)-0(2) 2.074(3)

Nb{1)-0(3) 1.941(3) Nhi{1)--0(4) 1.906(3)

Nb(1)-O(5) 2.103(3) Nb(1)~0(6) 1.826(3)

Nb{2)-0(3) 2.030(3) Nb(2)-0O(4) 1.982(3)

NB(2)-01(6) 2.013(3) Nb(2)-0(7) 1.738(3)

NB(2)-O(8) 1.997(3) Nb(2)-O(3)' 2.494(3)s
As(1)-0(D) 1.664(3) As(1-0(2) 1.670(3)

As(1)-0(5) 1.680(3) As(1)-0(®) 1.697(3)

= See text.

O3) (d = 2.494(T) ;\) would complete an extremely dis-
torted octahedron (Fig. 3). The arsenate group is tetrahe-
dral with a typical du,(As-0) of 1.677(2) A, although the
O-As-0 tetrahedral angles are quite distorted (min =
99.6(2)°, max = 114.2(2)°). Bond-valence sums {BVSs)
for the NbY and AsY species, calculated using the
Brown-Wu formalism (35), give the following values:
BVS[Nb(1}] = 5.02; BVS[Nb(2)] = 4.70, or 4.96 if the
~2.5-A bond to O(3) is included in the calculation;
BVS[As(1)] = 5.10. The Nb-0O and As-0 bond distances
in NaNb;AsO; accord with the expected average separa-

TABLE 5
Bond Angles (*) for NaNb,AsO,

O(2)-Nb{1)-O{1}) 81.8(1) O(3)-Nb(1)-O(1) 86.8(1)
O(3)-Nb(1)-0(2) 167.3(1) O(4)-Nb(1)-O(1) 90.7(1)
O{4)-Nb(1)-0O(2) 87.3(1) O(4)-Nb(1}-03) 98.4(1)
O(5)-Nb(1)-0(1) 81.9(1) O(5)-Nb{1)-0(2) 79.4(1)
O(5)~-Nb(1)-0(3) 93.6(1) O5)-Nb(1)}-0(4) 165.5(1)
O(6)-Nb(1)-0O(1} 168.3(1) 0(6)-Nb(1)-0(2) 92.6(1)
O(6y-Nb{1)-0(3) 97.6(1) O(6)-Nb{1)-0C(4) 99.3% 1)
O(6)-Nb(1)-0O(5) 87.1(1)

O(4)~Nb(2)-0(3) 88.7(1) O(6)-Nb(2)-0(3) 81.6(1)
O(6)-Nb(2)-0(4) 158.2(1) O(7)-NDb(2)-0(3) 102.8(1)
O(7)-Nb(2)-0O(4) 103.1(1) O(7)-Nb(2)-0(6) 98.0(2)
O8)-Nb{(2)-0(3) 157.0(1) O@)-Nb{(2)-0(4) 96.8(1)
0O(8)-Nb(2)-0(6) 85.3(1) O(8)-Nb(2)-0(7) 97.6(1)
O(2)-As(1)-0(D) 114.2(2) O(5)-As(1)-0O(1) 105.0(2)
0{5)-As(1)-0(2) 113.1(2) O(8)-As{1)-0f1) 113.4(2)
O(8)-As(1)-0(2) 99.6(2) O(®)-As(1)-0(5) 111.9(1)
As(1)-0(1)-Nb(1) 132.3(2) As(1)-0(2)-Nb(1) 138.0(2)
Nb(2)~-O(3)-Nb(1) 127.2(2) Nb{2)-0{4)-Nb{1) 136.2(2)
As(1)-0O{5)-Nb(1) 123.3(2) Nb(2)~0{6)-Nb(1) 143.6(2)
As(1)-0(3)-Nb(2) 140.8(2)
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FIG. 2. ORTEP (37) view of the asymmetric unit of NaNb,AsOg (Na
species omitted), showing the atomic connectivity and labeling scheme.
Thermal ellipsoids are illustrated at the 50% level, with symmetry-
equivalent atoms indicated by plain spheres with a radius equivalent to
U, for those species.

tions for these species, based on ionic-radii sums (36):
deate(Nb—0) = 1.99 A and dei(As—0) = 1.68 A.

Four oxygen atoms (O(1), 0(2), O(5), and O{8)) par-
take in Nb—O-As bonds, with 6,, = 133.6(2)°. O(3), O(4),
and 06} form Nb(1)-O-Nb(2) links (8,, = 135.7(2)°), and
O(7) is part of a short “"niobyl”” Nb—Q link, not linked to
any other atom except the Na* cation. All the oxygen
atoms except O(3) and ((6) also bond to the sodium cat-
ion. The sodium cation is seven-coordinate with respect
to nearby (d < 2.8 A) oxygen atoms, with d,,(Na~-0) =
2.561(1) A and a BVS of 1.00. The average ionic-radii-
sum bond distance for seven-coordinate Na* is 2.47 A,
slightly shorter than the observed value. The sodium-
atom coordination (Fig. 4) is irregular, but approximates
a pentagonal bipyramid (apical oxygen atoms (1) and
NN,

FIG. 3. The crystal structure of NaMb,AsQy, viewed down [100].
Selected atoms are labeled, and the “‘long’’ Nb(2)-0O(3} bonds are illus-
trated by dotted lines. Fifty percent thermal ellipsoids; Na—Q bonds
omitted for clarity.
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o(5)

FIG. 4. Detail of the seven-fold sodium-atom coordination sphere in
NaNb;AsQg. O atoms illustrated as spheres of arbitrary radius, with
O -+ O nonbonding contacts of <4.0 A shown as thin lines.

The polyhedral connectivity in NaNb;AsO; leads to a
structure containing columns of Nb(1)Os/Nb(2)Os units
(Fig. 5), crosslinked by AsO, groups, enclosing one-di-
mensional channels which propagate in the a direction
(Fig. 3). These channels are large enough to be occupied
by the sodium cations in “*side-by-side’’ configuration, as
the sodium-sodium distance (d = 3.608(6)A) is big
enough to allow simultaneous full occupancy of both
sites in the channels, which may be contrasted with the
disordered potassium channels in KNbyAsOj; (21).

CONCLUSIONS

The preparation, structure, and some properties of
NaNb,AsQj; are described. This phase complements the
many other M/Nb/(P, As)/O phases noted in the intro-
duction and has similar polyhedral building blocks, but is

a

FIG. 5. Polyhedral STRUPLO (38) plot of the niobium/oxygen
chain configuration in NaNb;AsQy, viewed approximately down the b
direction. Pairs of ‘‘edge-sharing”” Nb(2)-centered groups are lfinked
into an infinite chain by pairs of Nb(1)O, groups. For plotting, the Nb(2)
moiety has been assumed to be octahedral, incorporating the long
Nb(2)-0(3) bond into its coordination sphere, to emphasize the ‘‘dou-
ble chain’’ conrnectivity.
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not isostructural with any of them. Its most interesting
structural feature is the Nb(2)-centered unit, which is
“intermediate’” between octahedrali and distorted
square-pyramidal geometry and could perhaps be notated
as an NbQOs.; unit. Nb(2) is displaced from the plane
formed by the oxygen atoms O(3), O(4), O{(6), and O(8)
by ~0.36A, toward oxygen atoms O(7), resulting in the
long Nb(2)-0(3) bond (Table 4).

The three previously reported potassium niobium arse-
nate phases (20-22) do show some aspects of structural
similarity, when compared with NaNb:AsQ;. K;Nb;
As;0q; (20) has an open structure, built up from NbOg
and AsQy groups, linked via Nb—-O-As and Nb-O-Nb
vertices, enclosing the “‘guest’ K-cations in one-dimen-
sional channels, but with a quite different connectivity to
that observed in NaNb,AsQy. Both of the crystallograph-
ically distinct NbOg groups in K;:Nb,As;Q, are distorted
(dmin(Nb=0) = 1.73 A, dpax(Nb-0) =~ 2.23 A), but not to
the extent of Nb(2) in NaNb,AsQsg.

In KNb,AsOy; (21), the NbOg and AsQ, moieties are
linked via Nb-O-As and Nb—-O-Nb vertices, and also
via edge-sharing between pairs of NbOs octahedra. Both
distinct NbOg groups (dumin{Nb-0) =~ 1.82 A, dpin(Nb-0)
= 2.24 A) show somewhat less distortion than that ob-
served in K;NbyAs,Oyy. This polyhedral connectivity
also leads to one-dimensional channels, of two types: one
“6-ring’’ and one ‘‘8-ring.”” The potassium cations show
twofold disorder in this larger channel.

K;NbAs:Qg (22) is a layer structure, built up from the
typical NbOy; and AsOy polyhedral units, linked by ver-
tices. The interlayer region is occupied by the potassium
species. The NbOjg unit is highly distorted (dy;,(Nb-O) =
1.75 A,.da{ND—O) = 2.32 A), but again not to the extent
observed for the Nb(2) octahedron in NaNb,AsQg. The
authors considered the niobium-atom coordination in
K3;NbAs,Oq to be definitely octahedral rather than square
pyramidal.

In conclusion, NaNb;AsQOjz is another new phase with a
simple stoichiometry in this interesting area of solid-state
chemistry. Its structure is completely different to its
MNDb,POg-type phosphate analogues, such as KjsLis
Nb;PO; (5). NaNb,AsOg contains an isolated, short, Nb—-
O bond, which might be expected to have very favorable
optical properties due to the highly polarizable nature of
this bond (3). Although the crystal structure of
NaNb;AsOg is centrosymmetric, and the question of
SHG-response does not arise in this case, we are continu-
ing our explorations of the M/Nb/(As, P)/O phase space
in an effort to prepare other new phases which may have
practical applications in optical physics.
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